Search results for " nanotubes"
showing 10 items of 289 documents
The impact of temperature on electrical properties of polymer-based nanocomposites
2020
This work was supported by National Research Foundation of Ukraine, project 2020.02/0217. IK would also like to thank VIAA, State Education Development Agency for Latvian state fellowship. HK would like to thank Ministry of Education and Science of Ukraine, project for young researchers No. 0119U100435. In addition, SP and AAP are thankful for financial support from Latvian Council of Science via grant lzp-2018/2-0083. HK and AAP are grateful for the support from the COST Action CA17126.
Selective Cytotoxic Activity of Prodigiosin@halloysite Nanoformulation
2020
Prodigiosin, a bioactive secondary metabolite produced by Serratia marcescens, is an effective proapoptotic agent against various cancer cell lines, with little or no toxicity toward normal cells. The hydrophobicity of prodigiosin limits its use for medical and biotechnological applications, these limitations, however, can be overcome by using nanoscale drug carriers, resulting in promising formulations for target delivery systems with great potential for anticancer therapy. Here we report on prodigiosin-loaded halloysite-based nanoformulation and its effects on viability of malignant and non-malignant cells. We have found that prodigiosin-loaded halloysite nanotubes inhibit human epithelia…
Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review.
2019
Graphical abstract
Past, Present and Future Perspectives on Halloysite Clay Minerals
2020
Halloysite nanotubes (HNTs), clay minerals belonging to the kaolin groups, are emerging nanomaterials which have attracted the attention of the scientific community due to their interesting features, such as low-cost, availability and biocompatibility. In addition, their large surface area and tubular structure have led to HNTs’ application in different industrial purposes. This review reports a comprehensive overview of the historical background of HNT utilization in the last 20 years. In particular it will focus on the functionalization of the surfaces, both supramolecular and covalent, following applications in several fields, including biomedicine, environmental science and catalysis.
Hydrothermal Aging of an Epoxy Resin Filled with Carbon Nanofillers
2020
The effects of temperature and moisture on flexural and thermomechanical properties of neat and filled epoxy with both multiwall carbon nanotubes (CNT), carbon nanofibers (CNF), and their hybrid components were investigated. Two regimes of environmental aging were applied: Water absorption at 70 °
Halloysite/Keratin Nanocomposite for Human Hair Photoprotection Coating
2020
We propose a novel keratin treatment of human hair by its aqueous mixtures with natural halloysite clay nanotubes. The loaded clay nanotubes together with free keratin produce micrometer-thick protective coating on hair. First, colloidal and structural properties of halloysite/keratin dispersions and the nanotube loaded with this protein were investigated. Above the keratin isoelectric point (pH = 4), the protein adsorption into the positive halloysite lumen is favored because of the electrostatic attractions. The ζ-potential magnitude of these core-shell particles increased from -35 (in pristine form) to -43 mV allowing for an enhanced colloidal stability (15 h at pH = 6). This keratin-cla…
Amorphous Silicon Nanotubes via Galvanic Displacement Deposition
2013
Amorphous silicon nanotubes were grown in a single step into a polycarbonate membrane by a galvanic displacement reaction conducted in aqueous solution. In order to optimize the process, a specifically designed galvanic cell was used. SEM images, after polycarbonate dissolution, showed interconnected nanotube bundles with an average length of 18 μm and wall thickness of 38 nm.The deposited silicon was revealed by EDS analysis, whilst X-ray diffraction and Raman spectroscopy showed that nanotubes have an amorphous structure. Silicon nanotubes were also characterized by photo-electrochemical measurements that showed n-type conductivity and optical gap of ~1.6 eV. Keywords: Silicon nanotubes, …
Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens
2013
Carbon nanotubes (CNTs) are nanomaterials with interesting emerging applications. Their properties make CNTs excellent candidates for use as new nanovehicles in drug delivery, immunization and diagnostics. In the current study, we assessed the immune-response-amplifying properties of CNTs to haptens by using azoxystrobin, the first developed strobilurin fungicide, asamodel analyte. Anazoxystrobin derivative bearingacarboxylated spacer arm (hapten AZc6) was covalently coupled to bovine serum albumin (BSA), and the resulting BSA-AZc6 conjugate was covalently linked to four functionalized CNTs of different shapes and sizes, varying in diameter and length. These four types of CNT-based construc…
Effect of Reynolds number and lithium cation insertion on titanium anodization
2016
This work studies the influence of using hydrodynamic conditions (Reynolds number, Re = 0 to Re = 600) during Ti anodization and Li+ intercalation on anatase TiO2 nanotubes. The synthesized photocatalysts were characterized by using Field Emission Scanning Electron Microscope (FE-SEM), Raman Confocal Laser Microscopy, Electrochemical Impedance Spectroscopy (EIS), Mott-Schottky analysis (M-S), photoelectrochemical hydrogen production and resistance to photocorrosion tests. The obtained results showed that the conductivity of the NTs increases with Li+ intercalation and Re. The latter is due to the fact that the hydrodynamic conditions eliminate part of the initiation layer formed over the tu…
Symmetry and models of single-walled TiO2 nanotubes with rectangular morphology
2011
Abstract The formalism of line symmetry groups for one-periodic (1D) nanostructures with rotohelical symmetry has been applied for symmetry analysis of single-walled titania nanotubes (SW TiO2 NTs) formed by rolling up the stoichiometric two-periodic (2D) slabs of anatase structure. Either six- or twelve-layer (101) slabs have been cut from TiO2 crystal in a stable anatase phase. After structural optimization, the latter keeps the centered rectangular symmetry of initial slab slightly compressed along a direction coincided with large sides of elemental rectangles. We have considered two sets of SW TiO2 NTs with optimized six- and twelve-layer structures, which possess chiralities (−n, n) an…